Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 19(6): 555-568, 2020. tab, ilus
Article in English | LILACS | ID: biblio-1284299

ABSTRACT

Despite the development of modern medicine, alternative medicine, which has not lost its timeliness, remains attractive for the treatment of various diseases. Glabridin, a major flavonoid of Glycyrrhiza glabra, is known for its antioxidant and anti-inflammatory activity. The aim of this study was: 1) to determine the possible protective role of glabridin against ischemia/reperfusion (I/R) injury of the intestine; 2) to evaluate the in vitrocontractile responses of ileum smooth muscles to acetylcholine after an intestinal I/R; and 3) to explain the underlying molecular mechanism of its effect. Rats were assigned to groups of six rats each; 1) I/R, 2) gla10, 3) gla20, 4) gla40, 5) N5-[imino(nitroamino)methyl]-L-ornithine, methyl ester monohydrochloride (L-NAME)+gla40, and 6) Sham group. The healing effect of glabridin was abolished by L-NAME. Glabridin did not cause contractility of the smooth muscles to acetylcholine-induced contractile responses in intestinal I/R. Yet, it increased to spontaneous basal activity.


A pesar del desarrollo de la medicina moderna, la medicina alternativa, sin perder su vigencia, sigue siendo atractiva para el tratamiento de varias enfermedades. Glabradina, el flavonoide mayoritario de Glycyrrhiza glabra, es conocido por su actividad antioxidante y antiinflamatoria. Los propósitos de este estudio fueron: 1) Determinar el posible rol protector de glabradina ante daños intestinales por isquemia/reperfusion (I/R) 2) Evaluar in vitrolas respuestas de contracción de los músculos lisos del ileum ante acetilcolina después de I/R intestinal; y 3) Explicar el mecanismo molecular subyacente de este efecto. Se asignaron grupos de seis ratas: 1) I/R, 2) gla10, 3) gla20, 4) gla40, 5) N5-[imino(nitroamino)metil]-L-ornithina, metil ester monohidrochloruro (L-NAME)+gla40, y 6) Grupo testigo. El efecto curativo de glabridina fue abolido por L-NAME. Glabridina no causó contracción en el músculo liso como respuesta acetilcolina-inducida I/R. Además, incrementa la actividad basal expontánea.


Subject(s)
Animals , Rats , Phenols/administration & dosage , Reperfusion Injury/drug therapy , Cyclic AMP/metabolism , Glycyrrhiza , Isoflavones/administration & dosage , Phenols/pharmacology , Rats, Wistar , Cyclic AMP/analysis , Cyclic GMP/metabolism , Oxidative Stress/drug effects , NG-Nitroarginine Methyl Ester , Ileum/drug effects , Ileum/chemistry , Isoflavones/pharmacology , Malondialdehyde/analysis , Muscle, Smooth/drug effects
2.
Bol. latinoam. Caribe plantas med. aromát ; 17(3): 310-323, mayo 2018. ilus, tab
Article in English | LILACS | ID: biblio-915411

ABSTRACT

The aim of current study was to determinate ex vivo and chromatographic fingerprint by HPLC of four extracts of Euphorbia furcillata K. Ethyl acetate extract of Euphorbia furcillata (EaEEf) was the most effective and potent extract (Emax=98.69±1.24%) and its effect was partially endothelium-dependent. Functional vasorelaxant mechanism of action of EaEEf was determinate, EaEEf showed efficient relaxation of KCl [80 mM]-induced contraction and norepinephrine and CaCl2 contraction curves showed diminution of maximal contraction in the presence of EAEEf and EaEEf-relaxation curve was shifted to the right in the presence of L-NAME (nitric oxide synthase inhibitor) and ODQ (guanylate cyclase inhibitor). Chromatographic fingerprints analysis suggests presence of diterpenoid such as abietane, tigliane, and ingenane skeletons. Our experiments suggest the EaEEf vasorelaxant activity could be attributed to diterpenoid molecules whose mechanism involves nitric oxide production and calcium channel blockade.


Se determinó el efecto vasorrelajante ex vivo y los perfiles cromatográficos mediante HPLC de cuatro extractos de Euphorbia furcillata K.. El extracto de acetato de etilo de E. furcillata (EaEEf) fue el más eficaz y potente en la contracción inducida por norepinefrina (Emax=98.69±1.24%) y el efecto fue parcialmente dependiente del endotelio vascular. Se determinó el mecanismo de acción vasorrelajante para EaEEf, este mostró ser eficaz sobre la contracción inducida por KCl [80 mM] y la curva de contracción en respuesta a norepinefrina y CaCl2 en presencia de EaEEf mostró disminución en la contracción máxima, mientras que la curva de relajación de EaEEf en presencia de L-NAME (inhibidor de óxido nítrico sintasa) y ODQ (inhibidor de guanilato ciclasa) se desplazó hacia la derecha. El análisis cromatográfico de EaEEf sugiere la presencia de moléculas diterpenoides como abietano, tigliano y esqueletos de ingenano. Nuestros resultados sugieren que el efecto vasorrelajante de EaEEf podría atribuirse a moléculas diterpenoides, cuyo mecanismo de acción involucra la producción de óxido nítrico y bloqueo de canales de calcio.


Subject(s)
Animals , Male , Rats , Vasodilator Agents/pharmacology , Plant Extracts/pharmacology , Euphorbia/chemistry , Calcium Channel Blockers/metabolism , Chromatography, High Pressure Liquid , Rats, Wistar , Cyclic GMP/metabolism , Nitric Oxide/metabolism
3.
Braz. j. med. biol. res ; 51(5): e6714, 2018. tab, graf
Article in English | LILACS | ID: biblio-889083

ABSTRACT

This study aimed to investigate the protective effect of salvinorin A on the cerebral pial artery after forebrain ischemia and explore related mechanisms. Thirty Sprague-Dawley rats received forebrain ischemia for 10 min. The dilation responses of the cerebral pial artery to hypercapnia and hypotension were assessed in rats before and 1 h after ischemia. The ischemia reperfusion (IR) control group received DMSO (1 µL/kg) immediately after ischemia. Two different doses of salvinorin A (10 and 20 µg/kg) were administered following the onset of reperfusion. The 5th, 6th, and 7th groups received salvinorin A (20 µg/kg) and LY294002 (10 µM), L-NAME (10 μM), or norbinaltorphimine (norBIN, 1 μM) after ischemia. The levels of cGMP in the cerebrospinal fluid (CSF) were also measured. The phosphorylation of AKT (p-AKT) was measured in the cerebral cortex by western blot at 24 h post-ischemia. Cell necrosis and apoptosis were examined by hematoxylin-eosin staining (HE) and TUNEL staining, respectively. The motor function of the rats was evaluated at 1, 2, and 5 days post-ischemia. The dilation responses of the cerebral pial artery were significantly impaired after ischemia and were preserved by salvinorin A treatment. In addition, salvinorin A significantly increased the levels of cGMP and p-AKT, suppressed cell necrosis and apoptosis of the cerebral cortex and improved the motor function of the rats. These effects were abolished by LY294002, L-NAME, and norBIN. Salvinorin A preserved cerebral pial artery autoregulation in response to hypercapnia and hypotension via the PI3K/AKT/cGMP pathway.


Subject(s)
Animals , Male , Rats , Cerebral Arteries/drug effects , Brain Ischemia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Diterpenes, Clerodane/pharmacology , Signal Transduction , Cerebral Arteries/physiopathology , Brain Ischemia/drug therapy , Morpholines/administration & dosage , Chromones/administration & dosage , Rats, Sprague-Dawley , Cyclic GMP/cerebrospinal fluid , Cyclic GMP/metabolism , NG-Nitroarginine Methyl Ester , Diterpenes, Clerodane/antagonists & inhibitors , Disease Models, Animal , Naltrexone/administration & dosage , Naltrexone/analogs & derivatives
4.
Braz. j. med. biol. res ; 51(5): e6693, 2018. graf
Article in English | LILACS | ID: biblio-889091

ABSTRACT

Testosterone synthesis within Leydig cells is a calcium-dependent process. Intracellular calcium levels are regulated by different processes including ATP-activated P2X purinergic receptors, T-type Ca2+ channels modulated by the luteinizing hormone, and intracellular calcium storages recruited by a calcium-induced calcium release mechanism. On the other hand, nitric oxide (NO) is reported to have an inhibitory role in testosterone production. Based on these observations, we investigated the interaction between the purinergic and nitrergic systems in Leydig cells of adult mice. For this purpose, we recorded ATP-evoked currents in isolated Leydig cells using the whole cell patch clamp technique after treatment with L-NAME (300 μM and 1 mM), L-arginine (10, 100, 300, and 500 μM), ODQ (300 μM), and 8-Br-cGMP (100 μM). Our results show that NO produced by Leydig cells in basal conditions is insufficient to change the ATP-evoked currents and that extra NO provided by adding 300 μM L-arginine positively modulates the current through a mechanism involving the NO/cGMP signaling pathway. Thus, we report an interaction between the nitrergic and purinergic systems in Leydig cells and suggest that Ca2+ entry via the purinergic receptors can be regulated by NO.


Subject(s)
Animals , Male , Mice , Adenosine Triphosphate/physiology , Receptors, Purinergic/metabolism , Leydig Cells/physiology , Nitric Oxide/physiology , Arginine/administration & dosage , Arginine/metabolism , Thionucleotides/administration & dosage , Thionucleotides/metabolism , Action Potentials , Cells, Cultured , Cyclic GMP/administration & dosage , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Patch-Clamp Techniques , NG-Nitroarginine Methyl Ester/administration & dosage , NG-Nitroarginine Methyl Ester/metabolism , Nitric Oxide/biosynthesis
5.
Motriz (Online) ; 23(1): 1-6, Jan.-Mar. 2017. tab, ilus
Article in English | LILACS | ID: biblio-841831

ABSTRACT

Abstract The second messenger cGMP has been largely studied as a therapeutic target in a variety of disorders such as erectile dysfunction, arterial hypertension and heart failure. Evidence has shown thatcGMP activators are less efficient in estrogen-deficiency animals, but no studies exist involving non-pharmacological approacheson NO/cGMP signaling pathway in hypertensive postmenopausal women. The aim of this study is to examine NO/cGMP pathway, redox state and blood pressure in trained treatedhypertensive (HT) postmenopausal women comparing with normotensive (NT) group. The rationale for that is most of HT patients is encouraged by physician to perform exercise associated with pharmacological treatments.Aerobic exercise training (AET) consisted of 24 sessions, 3 times/week.Parameters were evaluated at baseline and after AET for both groups (HT=28; NT=33).In treatedHT group, AET was significantly effective in increasing cGMP concentrations (28%) accompanied by an up-regulation of SOD (97%) and catalase activity (37%). In NT group, we found an increasein SOD activity (58%). TreatedHT postmenopausal women were still responsive to AET increasing cGMP levels and up-regulating antioxidant system. It should also be emphasized that these findings provide information on the circulating biomarkers that might delay the developing of cardiovascular events in this particular population.(AU)


Subject(s)
Humans , Female , Middle Aged , Aged , Cyclic GMP/metabolism , Exercise , Hypertension , Postmenopause/physiology
6.
Braz. j. med. biol. res ; 47(12): 1057-1061, 12/2014. graf
Article in English | LILACS | ID: lil-727658

ABSTRACT

Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress.


Subject(s)
Animals , Male , Acute Pain/prevention & control , Carbon Monoxide/metabolism , Cyclic GMP/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Nociceptive Pain/prevention & control , Stress Disorders, Traumatic, Acute/metabolism , Cyclic GMP/antagonists & inhibitors , Deuteroporphyrins/metabolism , Heme Oxygenase (Decyclizing)/antagonists & inhibitors , Heme/analogs & derivatives , Heme/metabolism , Lysine/analogs & derivatives , Lysine/metabolism , Nociceptive Pain/metabolism , Oxadiazoles/pharmacology , Pain Measurement/methods , Rats, Wistar , Signal Transduction/physiology
7.
Experimental & Molecular Medicine ; : e65-2013.
Article in English | WPRIM | ID: wpr-152459

ABSTRACT

Vascular smooth muscle cells (VSMCs) undergo phenotypic changes in response to vascular injury such as angioplasty. Protein kinase G (PKG) has an important role in the process of VSMC phenotype switching. In this study, we examined whether rosiglitazone, a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, could modulate VSMC phenotype through the PKG pathway to reduce neointimal hyperplasia after angioplasty. In vitro experiments showed that rosiglitazone inhibited the phenotype change of VSMCs from a contractile to a synthetic form. The platelet-derived growth factor (PDGF)-induced reduction of PKG level was reversed by rosiglitazone treatment, resulting in increased PKG activity. This increased activity of PKG resulted in phosphorylation of vasodilator-stimulated phosphoprotein at serine 239, leading to inhibited proliferation of VSMCs. Interestingly, rosiglitazone did not change the level of nitric oxide (NO) or cyclic guanosine monophosphate (cGMP), which are upstream of PKG, suggesting that rosiglitazone influences PKG itself. Chromatin immunoprecipitation assays for the PKG promoter showed that the activation of PKG by rosiglitazone was mediated by the increased binding of Sp1 on the promoter region of PKG. In vivo experiments showed that rosiglitazone significantly inhibited neointimal formation after balloon injury. Immunohistochemistry staining for calponin and thrombospondin showed that this effect of rosiglitazone was mediated by modulating VSMC phenotype. Our findings demonstrate that rosiglitazone is a potent modulator of VSMC phenotype, which is regulated by PKG. This activation of PKG by rosiglitazone results in reduced neointimal hyperplasia after angioplasty. These results provide important mechanistic insight into the cardiovascular-protective effect of PPARgamma.


Subject(s)
Animals , Rats , Aorta/injuries , Calcium-Binding Proteins/genetics , Cell Proliferation , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/genetics , Hyperplasia/metabolism , Microfilament Proteins/genetics , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/drug effects , Nitric Oxide/metabolism , PPAR gamma/agonists , Promoter Regions, Genetic , Rats, Sprague-Dawley , Sp1 Transcription Factor/metabolism , Thiazolidinediones/pharmacology , Thrombospondins/genetics , Tunica Intima/metabolism , Vascular System Injuries/metabolism
8.
Braz. j. med. biol. res ; 45(6): 531-536, June 2012. ilus
Article in English | LILACS | ID: lil-622778

ABSTRACT

Implantation of Walker 256 tumor decreases acute systemic inflammation in rats. Inflammatory hyperalgesia is one of the most important events of acute inflammation. The L-arginine/NO/cGMP/K+ATP pathway has been proposed as the mechanism of peripheral antinociception mediated by several drugs and physical exercise. The objective of this study was to investigate a possible involvement of the NO/cGMP/K+ATP pathway in antinociception induced in Walker 256 tumor-bearing male Wistar rats (180-220 g). The groups consisted of 5-6 animals. Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. Walker tumor (4th and 7th day post-implantation) reduced prostaglandin E2- (PGE2, 400 ng/paw; 50 µL; intraplantar injection) and carrageenan-induced hypernociception (500 µg/paw; 100 µL; intraplantar injection). Walker tumor-induced analgesia was reversed (99.3% for carrageenan and 77.2% for PGE2) by a selective inhibitor of nitric oxide synthase (L-NAME; 90 mg/kg, ip) and L-arginine (200 mg/kg, ip), which prevented (80% for carrageenan and 65% for PGE2) the effect of L-NAME. Treatment with the soluble guanylyl cyclase inhibitor ODQ (100% for carrageenan and 95% for PGE2; 8 µg/paw) and the ATP-sensitive K+ channel (KATP) blocker glibenclamide (87.5% for carrageenan and 100% for PGE2; 160 µg/paw) reversed the antinociceptive effect of tumor bearing in a statistically significant manner (P < 0.05). The present study confirmed an intrinsic peripheral antinociceptive effect of Walker tumor bearing in rats. This antinociceptive effect seemed to be mediated by activation of the NO/cGMP pathway followed by the opening of KATP channels.


Subject(s)
Animals , Male , Rats , Analgesics/metabolism , /metabolism , Cyclic GMP/metabolism , KATP Channels/metabolism , Nitric Oxide/metabolism , Nociception/drug effects , Pain Threshold/drug effects , Arginine/metabolism , Carrageenan/antagonists & inhibitors , Carrageenan/pharmacology , Dinoprostone/pharmacology , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Oxadiazoles/pharmacology , Pain Measurement , Pain Threshold/physiology , Quinoxalines/pharmacology , Rats, Wistar , Signal Transduction
9.
Experimental & Molecular Medicine ; : 749-755, 2012.
Article in English | WPRIM | ID: wpr-110117

ABSTRACT

Cinnamyl alcohol (CAL) is known as an antipyretic, and a recent study showed its vasodilatory activity without explaining the mechanism. Here we demonstrate the vasodilatory effect and the mechanism of action of CAL in rat thoracic aorta. The change of tension in aortic strips treated with CAL was measured in an organ bath system. In addition, vascular strips or human umbilical vein endothelial cells (HUVECs) were used for biochemical experiments such as Western blot and nitrite and cyclic guanosine monophosphate (cGMP) measurements. CAL attenuated the vasoconstriction of phenylephrine (PE, 1 microM)-precontracted aortic strips in an endothelium-dependent manner. CAL-induced vasorelaxation was inhibited by pretreatment with NG-nitro-L-arginine methyl ester (L-NAME; 10(-4) M), methylene blue (MB; 10(-5) M) and 1 H-[1,2,4]-oxadiazolole-[4,3-a] quinoxalin-10one, (ODQ; 10(-6) or 10(-7) M) in the endothelium-intact aortic strips. Atrial natriuretic peptide (ANP; 10(-8) or 10(-9) M) did not affect the vasodilatory effect of CAL. The phosphorylation of endothelial nitric oxide synthase (eNOS) and generation of nitric oxide (NO) were stimulated by CAL treatment in HUVECs and inhibited by treatment with L-NAME. In addition, cGMP and PKG1 activation in aortic strips treated with CAL were also significantly inhibited by L-NAME. Furthermore, CAL relaxed Rho-kinase activator calpeptin-precontracted aortic strips, and the vasodilatory effect of CAL was inhibited by the ATP-sensitive K+ channel inhibitor glibenclamide (Gli; 10(-5) M) and the voltage-dependent K+ channel inhibitor 4-aminopyridine (4-AP; 2 x 10(-4) M). These results suggest that CAL induces vasorelaxation by activating K+ channels via the NO-cGMP-PKG pathway and the inhibition of Rho-kinase.


Subject(s)
Animals , Humans , Male , Rats , Aorta/drug effects , Atrial Natriuretic Factor/pharmacology , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinases/metabolism , Dipeptides/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Methylene Blue/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Oxadiazoles/pharmacology , Phenylephrine/pharmacology , Phosphorylation , Potassium Channel Blockers/pharmacology , Potassium Channels/agonists , Propanols/pharmacology , Quinoxalines/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Vasoconstriction/drug effects , Vasodilation/drug effects , rho-Associated Kinases/antagonists & inhibitors
10.
Rio de Janeiro; s.n; 2011. 71 p. ilus, tab, graf.
Thesis in Portuguese | LILACS, BBO | ID: biblio-866135

ABSTRACT

Estudos publicados nas duas últimas décadas sugerem um aumento do risco de doença cardiovascular (DCV) em pacientes com periodontite, mas os mecanismos fisiopatológicos dessa associação ainda não estão completamente esclarecidos. Uma vez que foi demonstrado aumento da ativação plaquetária e do estresse oxidativo na periodontite, o objetivo do presente estudo foi investigar a via L-arginina-óxido nítrico (NO)- guanosina monofosfato cíclica (GMPc) e parâmetros de estresse oxidativo em plaquetas de pacientes com periodontite, bem como avaliar o efeito do tratamento periodontal não-cirúrgico nessas variáveis. Um total de 10 pacientes sem periodontite (periodontalmente saudáveis ou com gengivite) e 10 pacientes com periodontite participaram do estudo. A avaliação clínica, laboratorial e experimental foi realizada no início do estudo e 90 dias após realização da terapia periodontal básica (grupo periodontite). A avaliação clínica periodontal incluiu registros de: profundidade de bolsa à sondagem (PBS), nível de inserção (NIC), percentual de placa e percentual de sangramento à sondagem. Os seguintes experimentos foram realizados: influxo de L-arginina; atividade e expressão das enzimas óxido nítrico sintase e da arginase; expressão das enzimas guanilato ciclase solúvel e fosfodiesterase 5; determinação dos níveis intraplaquetários de GMPc; agregação plaquetária; avaliação do estresse oxidativo (atividade oxidante total, atividade das enzimas antioxidantes catalase e da superóxido dismutase - SOD); medição dos níveis de proteína C reativa (CRP) e de fibrinogênio. Os resultados obtidos no início do estudo demonstraram ativação do influxo de L-arginina em plaquetas via sistema y+L nos pacientes com periodontite, bem como concentrações intraplaquetárias de GMPc diminuídas e aumento sistêmico da CRP. Após o tratamento periodontal, observou-se redução do percentual de sítios com PBS ≥ 6 mm, NIC 4-5 mm e NIC ≥ 6 mm, aumento nos níveis de GMPc, para níveis ...


Studies published over the last two decades have suggested an increase of cardiovascular disease (CVD) risk on periodontitis patients, but the physiopathological mechanisms involved in this association are not yet clear. Since it has been demonstrated an enhancement on both platelet activation and oxidative stress on periodontitis patients, the aim of this study was to investigate the L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway on platelets from periodontitis patients, and the effect of non-surgical periodontal treatment in these variables. A total of 10 patients without periodontitis (periodontal healthy controls or gingivitis patients) and 10 periodontitis patients were included in this study. The clinical, laboratorial, and experimental evaluations were performed at the beginning of the study and 90 days after the basic periodontal therapy (periodontitis group). The clinical periodontal evaluation included the measurements of probing pocket depth (PPD), clinical attachment level (CAL), plaque percentage, and percentage of bleeding on probing. The following experiments were performed: L-arginine influx; nitric oxide synthase and arginase enzymes activity and expression; expression of guanylate cyclase and phosphodiesterase-5 enzymes; measurement of intraplatelet cGMP levels; platelet aggregation; oxidative stress evaluation (total oxidant activity and activity of both antioxidant enzymes catalase and superoxide dismutase – SOD); measurement of C reactive protein (CRP) and fibrinogen. The initial results demonstrated an activation of L-arginine influx in platelets from periodontitis patients via y+L system, reduced intraplatelet cGMP levels and increased CRP. After periodontal treatment, it was observed reduction on percentage of sites with PPD ≥ 6 mm, CAL 4-5 mm and CAL ≥ 6 mm, enhancement on cGMP levels, to levels comparables to patients without periodontitis, accompanied by a higher activity of both antioxidant ...(AU)


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Arginine/metabolism , Cyclic GMP/metabolism , Oxidative Stress , Nitric Oxide/metabolism , Periodontitis/therapy , Blood Platelets/enzymology , Blood Platelets/metabolism , C-Reactive Protein , Cardiovascular Diseases/etiology , Fibrinogen , Platelet Activation , Platelet Aggregation
11.
Rio de Janeiro; s.n; 2011. 71 p. ilus, tab, graf.
Thesis in Portuguese | LILACS, BBO | ID: lil-673666

ABSTRACT

Estudos publicados nas duas últimas décadas sugerem um aumento do risco de doença cardiovascular (DCV) em pacientes com periodontite, mas os mecanismos fisiopatológicos dessa associação ainda não estão completamente esclarecidos. Uma vez que foi demonstrado aumento da ativação plaquetária e do estresse oxidativo na periodontite, o objetivo do presente estudo foi investigar a via L-arginina-óxido nítrico (NO)- guanosina monofosfato cíclica (GMPc) e parâmetros de estresse oxidativo em plaquetas de pacientes com periodontite, bem como avaliar o efeito do tratamento periodontal não-cirúrgico nessas variáveis. Um total de 10 pacientes sem periodontite (periodontalmente saudáveis ou com gengivite) e 10 pacientes com periodontite participaram do estudo. A avaliação clínica, laboratorial e experimental foi realizada no início do estudo e 90 dias após realização da terapia periodontal básica (grupo periodontite). A avaliação clínica periodontal incluiu registros de: profundidade de bolsa à sondagem (PBS), nível de inserção (NIC), percentual de placa e percentual de sangramento à sondagem. Os seguintes experimentos foram realizados: influxo de L-arginina; atividade e expressão das enzimas óxido nítrico sintase e da arginase; expressão das enzimas guanilato ciclase solúvel e fosfodiesterase 5; determinação dos níveis intraplaquetários de GMPc; agregação plaquetária; avaliação do estresse oxidativo (atividade oxidante total, atividade das enzimas antioxidantes catalase e da superóxido dismutase - SOD); medição dos níveis de proteína C reativa (CRP) e de fibrinogênio. Os resultados obtidos no início do estudo demonstraram ativação do influxo de L-arginina em plaquetas via sistema y+L nos pacientes com periodontite, bem como concentrações intraplaquetárias de GMPc diminuídas e aumento sistêmico da CRP. Após o tratamento periodontal, observou-se redução do percentual de sítios com PBS ≥ 6 mm, NIC 4-5 mm e NIC ≥ 6 mm, aumento nos níveis de GMPc, para níveis ...


Studies published over the last two decades have suggested an increase of cardiovascular disease (CVD) risk on periodontitis patients, but the physiopathological mechanisms involved in this association are not yet clear. Since it has been demonstrated an enhancement on both platelet activation and oxidative stress on periodontitis patients, the aim of this study was to investigate the L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway on platelets from periodontitis patients, and the effect of non-surgical periodontal treatment in these variables. A total of 10 patients without periodontitis (periodontal healthy controls or gingivitis patients) and 10 periodontitis patients were included in this study. The clinical, laboratorial, and experimental evaluations were performed at the beginning of the study and 90 days after the basic periodontal therapy (periodontitis group). The clinical periodontal evaluation included the measurements of probing pocket depth (PPD), clinical attachment level (CAL), plaque percentage, and percentage of bleeding on probing. The following experiments were performed: L-arginine influx; nitric oxide synthase and arginase enzymes activity and expression; expression of guanylate cyclase and phosphodiesterase-5 enzymes; measurement of intraplatelet cGMP levels; platelet aggregation; oxidative stress evaluation (total oxidant activity and activity of both antioxidant enzymes catalase and superoxide dismutase – SOD); measurement of C reactive protein (CRP) and fibrinogen. The initial results demonstrated an activation of L-arginine influx in platelets from periodontitis patients via y+L system, reduced intraplatelet cGMP levels and increased CRP. After periodontal treatment, it was observed reduction on percentage of sites with PPD ≥ 6 mm, CAL 4-5 mm and CAL ≥ 6 mm, enhancement on cGMP levels, to levels comparables to patients without periodontitis, accompanied by a higher activity of both antioxidant ...


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Arginine/metabolism , Cyclic GMP/metabolism , Oxidative Stress , Nitric Oxide/metabolism , Periodontitis/therapy , Blood Platelets/enzymology , Blood Platelets/metabolism , C-Reactive Protein , Cardiovascular Diseases/etiology , Fibrinogen , Platelet Activation , Platelet Aggregation
12.
Yonsei Medical Journal ; : 960-964, 2010.
Article in English | WPRIM | ID: wpr-33803

ABSTRACT

PURPOSE: The phosphodiesterase 5 inhibitor sildenafil has antinociceptive effects, mediated by an increase in cGMP. This study examined the role of spinal adenosine and serotonin receptors played in the antinociceptive effects of intrathecal sildenafil. MATERIALS AND METHODS: Intrathecal catheters were inserted into the subarachnoid space of Sprague-Dawley male rats as a drug delivery device. Pain was induced by injecting formalin into the plantar surface of rats and observing nociceptive behavior (flinching response) for 60 mininutes. Then, the effects of intrathecal adenosine and serotonin receptor antagonists on the antinociceptive activity of intrathecal sildenafil were examined. RESULTS: Intrathecal sildenafil suppressed the flinching response in a dose-dependent manner during phases 1 and 2 in the formalin test. Both CGS 15943 and dihydroergocristine decreased the antinociceptive effects of sildenafil during phases 1 and 2 in the formalin test. CONCLUSION: Intrathecal sildenafil effectively attenuated the pain evoked by formalin injection. Both adenosine and serotonin receptors may be involved in the antinociceptive action of sildenafil at the spinal level.


Subject(s)
Animals , Male , Rats , Adenosine/metabolism , Analgesics/therapeutic use , Cyclic GMP/metabolism , Dihydroergocristine/pharmacology , Injections, Spinal , Pain/drug therapy , Piperazines/pharmacology , Purines/pharmacology , Rats, Sprague-Dawley , Receptors, Purinergic P1/metabolism , Receptors, Serotonin/metabolism , Spinal Cord/metabolism , Sulfones/pharmacology , Vasodilator Agents/therapeutic use
13.
Indian J Exp Biol ; 2008 Mar; 46(3): 164-70
Article in English | IMSEAR | ID: sea-58746

ABSTRACT

L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) is an important signaling pathway involved in depression. With this information, the present study aimed to study the involvement of this signaling pathway in the antidepressant-like action of MK-801 (dizocilpine; N-methyl-d-aspartate receptor antagonist) in the mouse forced-swim test. Total immobility period was recorded in mouse forced swim test for 6 min. MK-801 (5-25 microg/kg., ip) produced a U-shaped curve in reducing the immobility period. The antidepressant-like effect of MK-801 (10 microg/kg, ip) was prevented by pretreatment with L-arginine (750 mg/kg, ip) [substrate for nitric oxide synthase (NOS)]. Pretreatment of mice with 7-nitroindazole (7-NI) (25 mg/kg, ip) [a specific neuronal nitric oxide synthase inhibitor] produced potentiation of the action of subeffective dose of MK-801 (5 microg/kg, ip). In addition, treatment of mice with methylene blue (10 mg/kg, ip) [direct inhibitor of both nitric oxide synthase and soluble guanylate cyclase] potentiated the effect of MK-801 (5 microg/kg, ip) in the forced-swim test. Further, the reduction in the immobility period elicited by MK-801 (10 microg/kg, ip) was also inhibited by pretreatment with sildenafil (5 mg/kg, ip) [phosphodiesterase 5 inhibitor]. The various modulators used in the study and their combination did not produce any changes in locomotor activity per se and in combination with MK-801. MK-801 however, at higher doses (25 microg/kg, ip) produced hyperlocomotion. The results demonstrated the involvement of nitric oxide signaling pathway in the antidepressant-like effect of MK-801 in mouse forced-swim test.


Subject(s)
Analysis of Variance , Animals , Antidepressive Agents/metabolism , Arginine/metabolism , Cyclic GMP/metabolism , Dizocilpine Maleate/metabolism , Dose-Response Relationship, Drug , Mice , Nitric Oxide/metabolism , Physical Exertion/drug effects , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Signal Transduction/physiology , Swimming
14.
J Biosci ; 2007 Dec; 32(7): 1281-9
Article in English | IMSEAR | ID: sea-110792

ABSTRACT

Cyclic AMP (cAMP)is a natural chemoattractant of the social amoeba Dictyostelium discoideum. It is detected by cell surface cAMP receptors. Besides a signalling cascade involving phosphatidylinositol 3,4,5-trisphosphate (PIP3), Ca2+ signalling has been shown to have a major role in chemotaxis. Previously, we have shown that arachidonic acid (AA) induces an increase in the cytosolic Ca2+ concentration by causing the release of Ca2+ from intracellular stores and activating influx of extracellular Ca2+. Here we report that AA is a chemoattractant for D. discoideum cells differentiated for 8-9 h. Motility towards a glass capillary filled with an AA solution was dose-dependent and qualitatively comparable to cAMP-induced chemotaxis. Ca2+ played an important role in AA chemotaxis of wild-type Ax2 as ethyleneglycol-bis(b-aminoethyl)-N,N,N',N'-tetraacetic acid (EGTA) added to the extracellular buffer strongly inhibited motility. In the HM1049 mutant whose iplA gene encoding a putative Ins(1,4,5)P3 -receptor had been knocked out, chemotaxis was only slightly affected by EGTA. Chemotaxis in the presence of extracellular Ca2+ was similar in both strains. Unlike cAMP, addition of AA to a cell suspension did not change cAMP or cGMP levels. A model for AA chemotaxis based on the findings in this and previous work is presented.


Subject(s)
Animals , Arachidonic Acid/pharmacology , Calcium/metabolism , Chemotaxis/drug effects , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Dictyostelium/cytology , Egtazic Acid/pharmacology , Mutation
16.
Indian J Exp Biol ; 2005 Feb; 43(2): 167-71
Article in English | IMSEAR | ID: sea-60597

ABSTRACT

Nitric oxide (NO) is an important neurotransmitter in the gut and has been demonstrated to be a key physiological mediator of non-adrenergic non-cholinergic (NANC) relaxation of gastrointestinal smooth muscle. In the present study the effect of PDE 5 inhibitor sildenafil on the gastrointestinal function (gastric emptying and intestinal transit) has been demonstrated in mice. Sildenafil (0.5-2 mg/kg, po) did not alter the percent gastric emptying however, in higher doses (5, 10 and 30 mg/kg, po) it inhibited the gastric emptying. On acute administration (0.5-5 mg/kg, po) it did not alter the intestinal transit but in higher doses (10 and 30 mg/kg, p.o.) delayed the intestinal transit. Further, the inhibitory effect of sildenafil was significantly blocked by L-NAME (10 mg/kg, ip), a non-selective NOS inhibitor and methylene blue (1 mg/kg, ip), a guanylate cyclase inhibitor. These findings suggest the participation of NO-cGMP transduction pathway in the inhibitory effect of sildenafil (higher doses) on the gastrointestinal smooth muscles and its potential application in patients with nutcracker oesophagus, hypertensive lower oesophageal sphincter (LOS), achalsia and diabetic gastroparesis or colitis where there is a loss of nNOS.


Subject(s)
Administration, Oral , Animals , Cyclic GMP/metabolism , Dose-Response Relationship, Drug , Female , Gastric Emptying/drug effects , Gastrointestinal Motility/drug effects , Gastrointestinal Tract/drug effects , Male , Mice , Muscle, Smooth/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Piperazines/pharmacology , Purines , Signal Transduction/drug effects , Sulfones
17.
Indian J Exp Biol ; 2004 Apr; 42(4): 361-7
Article in English | IMSEAR | ID: sea-59881

ABSTRACT

Acetylcholine and cholinomimetic agents with predominant muscarinic action are known to increase the concentration of cGMP by activation of nitric oxide signaling pathway in the nociceptive conditions. The present study was aimed to investigate the NO-cGMP-PDE5 pathway in nociceptive conditions in the experimental animals. Nociceptive threshold was assessed by acetic acid-induced writhing assay (chemonociception) or carrageenan-induced hyperalgesia. Sildenafil [1-5 mg/kg, ip, 50-200 microg/paw, intraplantar (ipl)] produced dose dependent antinociception in both the tested models. Coadministration of acetylcholine (50 mcg/paw, ipl) or cholinomimetic agent, neostigmine (0.1 mcg/kg, ip and 25 ng/paw, ipl) augmented the peripheral antinociceptive effect of sildenafil. This effect was sensitive to blockade by L-NAME (20 mg/kg, ip, 100 microg/paw, ipl), a non-selective NOS inhibitor and methylene blue (1 mg/kg, ip), a guanylate cyclase inhibitor, which per se had little or no effect in both the models of nociception. Further, the per se analgesic effect of acetylcholine and neostigmine was blocked by both L-NAME and methylene blue in the models of nociception, suggesting the activation of NO-cGMP pathway. Also, both L-NAME and methylene blue blocked the per se analgesic effect of sildenafil. These results indicate the peripheral accumulation of cGMP may be responsible for antinociceptive effect, and a possible interaction between cholinergic agents and PDE5 system in models of nociception.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/metabolism , Acetic Acid/pharmacology , Acetylcholine/pharmacology , Animals , Carrageenan/pharmacology , Cholinergic Agents/metabolism , Cholinesterase Inhibitors/pharmacology , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5 , Dose-Response Relationship, Drug , Drug Combinations , Enzyme Inhibitors/pharmacology , Female , Guanylate Cyclase/antagonists & inhibitors , Hyperalgesia/chemically induced , Male , Methylene Blue/pharmacology , Mice , NG-Nitroarginine Methyl Ester/pharmacology , Neostigmine/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase/antagonists & inhibitors , Pain/chemically induced , Pain Measurement , Phosphodiesterase Inhibitors/pharmacology , Piperazines/therapeutic use , Purines , Rats , Sulfones
18.
Biol. Res ; 37(4): 641-645, 2004. ilus, graf
Article in English | LILACS | ID: lil-437520

ABSTRACT

A capacitative Ca2+ entry (CCE) pathway, activated by depletion of intracellular Ca2+ stores, is thought to mediate much of the Ca2+ entry evoked by receptors that stimulate phospholipase C (PLC). However, in A7r5 vascular smooth muscle cells, vasopressin, which stimulates PLC, empties intracellular Ca2+ stores but simultaneously inhibits their ability to activate CCE. The diacylglycerol produced with the IP3 that empties the stores is metabolized to arachidonic and this leads to activation of nitric oxide (NO) synthase, production of NO and cyclic GMP, and consequent activation of protein kinase G. The latter inhibits CCE. In parallel, NO directly activates a non-capacitative Ca2+ entry (NCCE) pathway, which is entirely responsible for the Ca2+ entry that occurs in the presence of vasopressin. This reciprocal regulation of two Ca2+ entry pathways ensures that there is sequential activation of first NCCE in the presence of vasopressin, and then a transient activation of CCE when vasopressin is removed. We suggest that the two routes for Ca2+ entry may selectively direct Ca2+ to processes that mediate activation and then recovery of the cell.


Subject(s)
Animals , Calcium/metabolism , Calcium Channels/metabolism , Type C Phospholipases/metabolism , Muscle, Smooth, Vascular/metabolism , Calcium Signaling/physiology , Vasopressins/metabolism , Cell Line , Cyclic GMP/metabolism , Nitric Oxide/biosynthesis
19.
Yonsei Medical Journal ; : 1014-1020, 2003.
Article in English | WPRIM | ID: wpr-119975

ABSTRACT

The diagnostic and prognostic implication of exaggerated blood pressure response to exercise have been controversial, with opinions ranging from a benign process to a harbinger of potential cardiovascular morbidity. Endothelial dysfunction has been demonstrated in patients with atherosclerosis and as a risk factor for coronary artery disease. However, whether the cause of exercise-induced hypertension might be related to endothelial dysfunction has not been well elucidated. We evaluated endothelial function in patients who showed a systolic blood pressure > or =210 mmHg in males and > or = 190 mmHg in females during treadmill exercise test. We measured the endothelial function of the brachial artery in 35 patients with exercise-induced hypertension, and in 35 age- and gender-matched normal control subjects, by a high resolution ultrasound technique, and the concentration of NO2-/NO3- and cyclic guanosine monophosphate (GMP). Endothelial-dependent vasodilation was impaired in patients with hypertension compared to normal controls (3.14+/-0.61 vs. 6.5+/-0.76%, p < 0.05). The extent of vasodilation was significantly correlated with age (r=-0.28, p < 0.05) and systolic blood pressure difference (r=-0.36, p < 0.05). The levels of NO2-/NO3- and cyclic GMP at maximal exercise were significantly higher than those at rest and recovery in both controls and the hypertensive group (p < 0.05). Although there was no significant difference in the increment of NO2-/NO3- during maximal exercise between the controls and hypertensive group (55+/-17 vs. 56+/-12micromol/L, p=NS), cyclic GMP level during maximal exercise was significantly higher in the control group than the hypertensive group (10+/-1.8 vs. 8.3+/-2.5 pmol/ml, p 0.05). Patients with exercise-induced hypertension have poor endothelium-dependent vasodilation due to an impaired nitric oxide/cyclic GMP pathway, which may play a significant role in increasing blood pressure during exercise with inadequate peripheral adjustment to changing cardiac output.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Cyclic GMP/metabolism , Endothelium, Vascular/physiopathology , Exercise , Hypertension/etiology , Nitric Oxide/metabolism
20.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 299-301, 2002.
Article in English | WPRIM | ID: wpr-634105

ABSTRACT

To investigate the expression of the HO-1 gene in PC12 cells in hypoxic environment and gain further insight to the role of HO-1 in cerebral ischemia, PC12 cells were exposed to hypoxia environment (95% N2, 5% CO2) for 0.5 h, 1 h, 4 h, 8 h, 12 h, 24 h respectively. The level of HO-1 mRNA was examined by reverse transcriptase polymerase chain reaction (RT-PCR); the volume of COHb in the media were measured spectrophotometrically and the cGMP concentration of PC12 cell extracts was determined by radioimmunoassay. We found that after exposure to hypoxia for 1 h, 4 h, 8 h, 12 h, 24 h, HO-1 mRNA increased by 3%, 4%, 17%, 31% 36% as compared with that in control group respectively (P < 0.01 or P < 0.05); the COHb increased by 12%, 29%, 59%, 88%, 94% as compared with that in control group respectively (P < 0.01 or P < 0.05), and the cGMP concentration were 2.2, 3.4, 5.2, 8.1, 10.9-fold as that of the control group (P < 0.01). We are led to conclude that hypoxia induced the expression of HO-1 gene, the production of endogenous CO, and the concentration of cGMP was elevated as well.


Subject(s)
Carbon Monoxide/metabolism , Cell Hypoxia , Cyclic GMP/metabolism , Heme Oxygenase (Decyclizing)/biosynthesis , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase-1 , PC12 Cells , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL